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Abstract. Methods introduced in the preceding paper for resolving the multiplicity of 
irreducible subrepresentations occurring in the decomposition of the tensor product of two 
irreducible representations of a compact semisimple Lie group are illustrated by application 
to U(3), U(4) and general U(n). For U(3) we rederive very simply the known multiplicity 
structure for an irreducible tensor operator of fixed shift weight in terms of the decomposi- 
tion of tensor product highest weight vectors into certain direct product states. We use 
the method to illustrate structural parallels between the Clebsch-Gordan problem for 
general U(n) and the U(3) case. Finally, we study in detail the multiplicity structure for 
a specific U(4) irreducible operator showing both the similarities and differences with U(3). 

1. Introduction 

The explicit decomposition of tensor product representations of the compact semisimple 
Lie groups, particularly the (special) unitary, orthogonal and symplectic groups, is a 
fundamental problem in the application of representation theory to the study of 
many-electron and many-nucleon systems. In the preceding paper (Edwards and Gould 
1986, hereinafter referred to as I) we developed and extended a result of Parthasarathy 
et a1 (1967) which characterises multiplicities of irreducible components of tensor 
product representations simply in terms of Lie algebra action on weight spaces. We 
showed in general terms how this result may be used as a tool for an explicit resolution 
of the multiplicity in tensor product representations. In this paper we shall illustrate 
in detail how the tool may be applied to analyse products of irreducible representations 
of U(3) and U(4). 

For any compact semisimple Lie group, the multiplicity of the irreducible com- 
ponent of highest weight Ai+p in the product representation A O p  varies in a 
characteristic way with p if A and A i  are held fixed. For small p the multiplicity is 
zero, while for large p the multiplicity is equal to its maximal value, the dimension 
of the weight space Y(A). The transition from zero to the maximal multiplicity occurs 
inside a narrow 'boundary layer' in the p lattice where intermediate values of the 
multiplicity occur. In the case of the group U(3), this structure has been studied in 
detail (Lohe et a1 1977). The results are illustrated in figure 1. Each point in the 
diagram is assigned three coordinates by orthogonal projection onto each of the three 
axes oriented at 120" to one another. The points for which each coordinate is an 
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Figure 1. A 'pie-shaped' region for SU(3). The shaded region is the set of I R  /.I = (mi, mz) 
for fixed I R  A and shift weight A ,  for which the multiplicity of A ,  + /.I in A @/.I is not less 
than a fixed integer k 

integer form the weight lattice; the segment with non-negative components forms the 
lattice of possible highest weights. As p varies over this segment, the level sets, for 
which the multiplicity of Al+p in AOp is some constant between 0 and dim V , ( A ) ,  
form a set of lines which are the boundaries of a nested set of 'pie-shaped' regions. 

In this paper we rederive these U(3) results very simply using the characterisation 
of highest weight vectors in tensor product representations introduced in I. We then 
examine the analogous multiplicity structures for U(4) and higher U( n), and show by 
taking an example from U(4) how the tools of I may be used to study them in detail. 

2. Summary of needed results 

In I we examined highest weight vectors (HWV) of irreducible subrepresentations of 
product representations A 0 p of a compact semisimple Lie group G and focused on 
terms of the form e@ey in their expansion in direct product states. We showed that 
a necessary and sufficient condition on a vector e E V(A) of weight A i  for a term e 0  e? 
to occur as a summand in the expansion of a HWV is that it should be annihilated 
by each of the operators y(f+',*k). (Notation throughout this paper is as given in 0 2 

It is convenient to express this annihilation property in terms of the spectral 
decomposition of e under the subalgebras of L isomorphic to sl(2) spanned by the 
sets {xk, hk,  yk} .  The IR of sl(2) are simply labelled by their dimension. Fix A and hi  
and write Aik for the lcth component of A. Each subalgebra d(2)k defines a nested 
sequence of subspaces of V(A), (0) = V k o ~  V k ,  c V k 2 ~  . . . c VkmmaX = V(A), with V k ,  
spanned by the set of IR of d(2)k whose dimension is no greater than m. Let 
W k ,  = V k ,  n & ( A ) .  The nested sequence (0) = W k o c  W k ,  c Wk2 c . . . e WkmmaX = 
Y(A) gives the Sl(2)k spectral properties of the weight space V , ( A ) .  Write mk for 
(p,  a k ) .  The condition y p + ' e  = 0 for e E V , ( A )  is equivalent to the condition e E Wknk 
with nk = 2mk - Aik + 1. The condition that e @  e? appears in an expansion of a HWV 

of I.) 
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in direct product states is now 
e E w',,, n w ~ , , ~  n . . , n win(. 

The study of multiplicity resolution for tensor products of G is in this way reduced 
to a study of the intersections of d(2)k submodules in single IR of G. 

3. Multiplicity structure for U(3) 

The Sl(2)k decompositions of I R O ~  U(3) are easy to characterise because of the simplicity 
of the branching law for U(3) 2 U(2). Fix a U(3) highest weight A (defined with respect 
to the Cartan subalgebra spanned by {al l ,  a22,  a,,} where a', is the matrix with 1 in 
the ( i ,  j ) th  position and zeros elsewhere). Let its components be ( A l ,  A2, A,). Let the 
components of a weight A I  occurring in V ( A )  be ( A I l ,  A12,  AI , ) .  The weight space V , ( A )  
has two different bases, one of Gel'fand vectors arising from the chain U(3) 2 U(2), 2 

U( 1)' corresponding to the algebra s1(2), spanned by a ' ,  - a22,  a 2 J ,  and the other 
from the chain U(3) 2 U(2), 2 U( 1)2 corresponding to the algebra sl(2), spanned by 
{a2 , ,  a 2 2 -  a3,, Let d=d im V , ( A ) .  With respect to the first subgroup chain, V , ( A )  
has a Gel'fand basis {&, e2,.  . . , & )  where tm has the Gel'fand pattern 

(pl: m;:'ym) 

with pl and u1 defined by the conditions 

P1+ (+I = AI' + Az2 

p1 + 1 = max{A,,, A2, A12,  A l l  -t A12 - A,}. 
Similarly with respect to the second chain, V , ( A )  has a Gel'fand basis {vl ,  v 2 , .  . . . , v d }  

where vm has the Gel'fand pattern 

( p 2 1  m;:*ym) 

P Z +  (+2= A z 2 +  A13 

P2+ 1 = max(A12, A23 hI2+ h13 -A,}. 
The spectral decomposition of V , ( A )  under s1(2), (resps1(2),) yields the d one- 

dimensional subspaces {C&, . . . , C t d }  (resp {Cvl,  . . . , C v d } ) .  For simplicity we shall 
denote the 'cumulative' spectral subspaces Wkm defined in § 2 by 

giving the ascending chains 
Vkm E ~ : ~ - c r ~ + 2 m - l  

{ O } =  V l 0 c  V ' , c  . . . t VId = V , ( A )  

{o}= V 2 o c  v21 c . . . c v 2 d  = K(h) .  

VI,  is the linear span of {&, . . . , tm} and V 2 ,  is the linear span of {vl, . . . ,v,}. 

of the following fact: 
The multiplicity structure for U(3) (shown in figure 1) is an immediate consequence 

dim( VI, n V 2 , )  = max( r + s - d, 0). 
This will be proved below. The multiplicity of A,  + p in A O p  is dim( V ' ,  n V 2 s )  with r 
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given by 

if A ,  - d l  3 d 

if A ,  - d ,  S 0 
r =  A , - d ,  if Os A ,  - d , s  d [: 

where d ,  = p1 - A i l  = max(0, A 2  - A i l ,  -Ai , ,  A i 2 -  A,), and s given by an analogous 
formula in terms of d,. The set of I R  p of G for which the multiplicity of A i  + p in 
A Op is at least m E {0,1,. . . , d }  is seen to be the ‘pie-shaped’ region 

P,,, = { p  E A+lp, 3 d , +  m, p 2 3  d,+  m, p 1 + p 2 3  d , +  d ,+  d + k } .  

The assertion dim( VI, n V2,)  = max( r + s - d, 0) follows directly by simple 
dimension counting from the statement dim( VI, n V 2 , )  = 0 if r + s = d, since dim V ’ ,  = r 
and dim V 2 ,  = s. We can prove the latter statement by induction over r as follows. It 
is obvious for r = 0. Suppose VI,  n V2d-m = (0). Let C be the second-order Casimir 
operator for U(2), and observe that the U(2), shift properties of the U(2), generators 
imply that CV2d-,,,-l c V’d-m. All the eigenspaces of C in V , ( A )  are one-dimensional 
since C separates different IR of s1(2),, so if c,+, is the eigenvalue of C for &,+, and 
e €  V , ( A )  

( C  - c,,,+,)e = O e e  E @&,+l .  

Hence v’,,,,, n V2d-m_, c_ etm+, since 

( C  - c,,,+,)( V,+, n v*~- , , - , )  c V I , , ,  n V2d-m 

= (0) by assumption. 

From the known matrix elements of the generators of U(2), in the U(2), Gel’fand 
basis, it is easy to check that all the Gel’fand vectors tj have non-zero maximal spectral 
component under U(2),: in other words 

((m+l, T d )  # 0. 

Hence, for m + 1 < d, [,,,+, E V2d-m-l forcing V I , , , + ,  n v 2 d - m - l  = (0) as required. For 
m + 1 = d, V2d-, ,- l  = v * ~  = (0) completing the proof. 

4. Multiplicity structure for U(4) and higher U(n) 

U(3) has an exceptionally simple multiplicity structure which is embodied in the 
formula dim( VI, n V 2 , )  = max( r + s - d, 0). Although Clebsch-Gordan decomposi- 
tions for higher U(n)  are substantially more complicated than for U(3), a number of 
general structural features remain. In particular the zero, maximal and intermediate 
multiplicity regions give rise to higher-dimensional ‘pie-shaped’ regions, with the region 
of intermediate multiplicity forming a narrow boundary layer between the zero and 
maximal multiplicity regions. Some properties of this boundary layer can be gleaned 
from the results of I. 

Each ~ l ( 2 ) ~  subalgebra of L gives rise to a nested sequence of subspaces of a weight 
space & ( A )  

in just the same way as constructed above for U(3). The multiplicity structure of the 
Clebsch-Gordan problem is embedded in the I-fold intersections of these subspaces. 

{o}= V k , c  V k , c  . . . c Vkd = V,(h) 
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The problem of studying these intersections in the case of U( n )  is in principle relativeiy 
straightforward since sl(2) k-adapted subspaces can readily be constructed and enumer- 
ated using Gel’fand bases. The details of three- or more-fold intersections rapidly 
become complex as n increases. However, for a vast majority of cases it is only 
necessary to study one- and two-fold intersections, corresponding to situations, for 
fixed A and shift weight A,, where no more than two of the components of p lie in the 
intermediate multiplicity region. In such cases the other components of p either yield 
a zero subspace (producing a zero subspace for the intersection of all the V k , )  or else 
a maximal subspace (i.e. the whole of V,(A)-which can be disregarded in determining 
intersections). This will be verified in detail below with an example from U(4). 

When all but one of the components of p yield maximal subspaces, the multiplicity 
structure (for arbitrary compact semisimple groups) is precisely analogous to the 
structure along the long sides of the U(3) ‘pie-shaped’ regions. Suppose the exceptional 
component is k. Then the multiplicity increases monotonically as (p ,  (Yk) moves through 
the region of intermediate multiplicity from zero to dim K(A), jumping in steps given 
by dim Vkl, dim Vk2,  etc. The multidimensional ‘pie-shaped’ regions for a Lie algebra 
of rank 1 will have 1 such ( I  - 1)-dimensional sides. 

When all but two of the components of p yield maximal subspaces (corresponding 
in the U(3) case to the truncated top apex of the pie slice), there are essentially only 
two possibilities. Either the two relevant Sl(2)k subalgebras will commute or they will 
fail to commute. When they commute, the intersections between the spectral subspaces 
of the two Sl(2)k subalgebras are simply determined for U(n)  using Gel’fand bases. 
When they fail to commute, the two subalgebras generate together an algebra isomor- 
phic to sl(3) and the problem is identical to that for U(3): the same truncated pie 
slices will appear in cross section. It is worth noting that spectral enumeration via 
Gel’fand bases completely determines n-fold d(2)k intersections whenever all n sub- 
algebras mutually commute. We now illustrate with an example. 

Take G = U(4), A = (11,8,4,1) and A, = (5,10,6,3). With the matrices a’, (1 in the 
( i ,  j )  position, zeros elsewhere) as a basis for L, the three sl(2) subalgebras can be taken 
as the spans of {a1’ ,  a ’ ,  - a’’, a’ ,} ,  {a’,, a’, - a,,, - a‘‘, a‘,}. Denote 
them s1(2),, sl(2)’ and sl(2),, and the three corresponding U(2) subgroups U(2),, U(2), 
and U(2),. Enumerating Gel’fand basis weight vectors with respect to the appropriate 
subgroup embeddings yields the following spectral decomposition of the eight- 
dimensional ( 5 ,  10,6,3) weight space: 

and {a3‘, 

U(2),:3 x (1 1,4)@5 x (10, 5 )  

U(2)’: 3 X ( 1 1 , 5 ) 0 5 ~ ( 1 0 , 6 )  

u(2),: 2 x  ( 8 , 1 ) 0 3  x ( 7 , 2 ) 0 3  X (6,3).  

Hence 

dim VI,  = 5 dim V 1 * = 8  

dim V’, = 5 dim V’, = 8 

dim V 3 ,  = 3  dim V 3 ’ = 6  dim V33 = 8. 

With p = (m,, m2, m3, m ) ,  the intermediate multiplicity regions occur for 

m ,  - m, = 0 m, -  m3 = 4 m3 - m4 = 3,4. 

The dimensions of the intersections V’,n V 2 ,  n V 3 ,  for r = 1,2,  s = 1 , 2  and t = 1,2 ,3  
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form the following 2 x 3 x 3 matrix of integers: 

1;;: r = 2 :  
s: 1 
t :  1 2 3  

1:;; r = l :  
s: 1 
t :  1 2 3  

This gives the details of the truncated apex of a wedge-shaped multiplicity diagram. 
In all but the two cases ( r ,  s, t )  = ( 1 , 1 , 1 )  and (1 ,1,2) ,  one of the three subspaces 

Vir, V2 ,  and V 3 ,  was maximal in the above calculation so that only a pairwise 
intersection needed to be considered. The cases V',n V z ,  (with V3, maximal) and 
V2,  n V 3 ,  (with V' ,  maximal) were evaluated by enumerating Gel'fand bases reduced 
with respect to the U(3) subgroups acting on the indices {1,2,3} and {2,3,4} respec- 
tively. This reduced the intersection determination to a series of U(3) cases, which 
were solved in 0 3. The case V ' ,  n V 3 ,  (with V 2 ,  maximal) is evaluated by enumerating 
Gel'fand bases reduced with respect to the {1,2,3} U(3) and the {1,2} U(2) for the 
weights (5,10,6,3),  (5,10,7,2) and (5,10,8, 1) :  this yields a spectral decomposition 
of the (5,10,6,3) weight space under U(2), x U(2), and the pairwise intersection spaces 
follow directly. The two cases involving three-way intersections had to be solved by 
considering known matrix elements of the U(2), generators acting on vectors in the 
pairwise intersection v', n v2,. 

The apex of the multiplicity diagram can be seen from this example to have a 
structure sufficiently complex that a general detailed description of this region for 
arbitrary U(n) seems to be out of the question. However the example also makes it 
clear that simple tools of spectral analysis such as Gel'fand basis enumeration can go 
a long way towards a complete solution in individual cases. 

5. Conclusion 

For brevity we have confined ourselves in this paper to giving simplified derivations 
of the multiplicity diagrams for the various cases considered. This is only the first of 
a long series of steps necessary in producing complete algorithms for the computation 
of Clebsch-Gordan coefficients for U(n) using the methods of I. The next stage will 
include considering the form of the U( n )  : U( n - 1)  reduced coefficients implied by 
these methods, and to analyse and exploit the many Weyl group symmetries present. 
The characterisation of highest weight vectors in tensor product representations via 
their components of the form e @  e$ lends itself directly to further analysis via subgroup 
chains and Weyl symmetries. This is the subject of continuing research. 
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